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SUMMARY

A fourth-order numerical method for solving the Navier±Stokes equations in streamfunction=vorticity
formulation on a two-dimensional non-uniform orthogonal grid has been tested on the ¯uid ¯ow in a
constricted symmetric channel. The family of grids is generated algebraically using a conformal transformation
followed by a non-uniform stretching of the mesh cells in which the shape of the channel boundary can vary from
a smooth constriction to one which one possesses a very sharp but smooth corner. The generality of the grids
allows the use of long channels upstream and downstream as well as having a re®ned grid near the sharp corner.
Derivatives in the governing equations are replaced by fourth-order central differences and the vorticity is
eliminated, either before or after the discretization, to form a wide difference molecule for the streamfunction.
Extra boundary conditions, necessary for wide-molecule methods, are supplied by a procedure proposed by
Henshaw et al. The ensuing set of non-linear equations is solved using Newton iteration. Results have been
obtained for Reynolds numbers up to 250 for three constrictions, the ®rst being smooth, the second having a
moderately sharp corner and the third with a very sharp corner. Estimates of the error incurred show that the
results are very accurate and substantially better than those of the corresponding second-order method. The
observed order of the method has been shown to be close to four, demonstrating that the method is genuinely
fourth-order. # 1977 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fluid ¯ow problems using, for example, the Navier±Stokes equations as the governing equations can

be solved using a variety of numerical methods and can be broadly classi®ed as ®nite difference,

®nite element or ®nite volume methods. Traditionally these use second-order formulaes; for example,

®nite difference often uses second-order central differences which are relatively easy to programme.

However, there is a great advantage in using a higher-order method, since for a given error tolerance

the number of nodal points employed can be greatly reduced and consequently the CPU time is

reduced. Such a saving of CPU time is useful for a method in two space dimensions and could be

necessary for a problem in three dimensions. Consequently such methods have been developed and

can be categorized as either wide-molecule methods1±3 or compact methods.4±9 Most effort has been
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devoted to compact methods, since ®rstly the ¯ow is determined solely from information from the

nearest neighbours and secondly extra boundary conditions, required by wide-molecule methods, are

not necessary. However, compact methods are less accurate than wide-molecule methods,

particularly at high Reynolds numbers.

Most of the fourth-order methods developed have only been applied using uniform grids and often

only for the two-dimensional ¯ow in a driven cavity. We would like to extend these calculations by

considering non-uniform grids, particularly in geometries which contain a re-entrant corner. At such a

corner the ¯ow becomes singular and in particular the vorticity becomes in®nite.10 In order to obtain

accurate results near such a corner, it is necessary to have a highly re®ned non-uniform grid. A classic

problem for studying the ¯ow past a re-entrant corner is the ¯ow in a uniform channel containing a

step-down constriction. There are many such studies including uniform, non-uniform and

pseudospectral meshes.11±14

In this paper we study the steady ¯ow using the streamfunction=vorticity formulation in a two-

dimensional constricting channel in which the boundary can on one hand be very smooth and on the

other have an increasingly sharp but smooth corner. We have in fact a family of grids given in terms

of a parameter which can be selected to control the degree of sharpness of the corner. In the limit the

corner is in®nitely sharp and forms the most severe of re-entrant corners having an angle of 360�. The

grid is constructed using a conformal transformation in which the mesh cells can be arbitrarily

stretched. The result is a very general orthogonal grid in which the degree and nature of the non-

uniformity can be speci®ed to meet the needs of the problem being studied.

We use standard fourth-order central differences to approximate derivatives which form a wide

molecule, which necessitates the use of an extra condition at the boundary. There are many ways in

which this can be done and we have chosen a method proposed by Henshaw and co-workers.1,2 He

applies the boundary operator to the governing equations on the boundary, which is then discretized

using second-order differences. Henshaw shows that the overall accuracy is fourth-order (see also

Reference 15) and that good accuracy is maintained at the boundary.

The set of non-linear equations resulting from the discretization is solved using Newton iteration.

This has proved to be an excellent method for solving such a set of equations.3,13,14,16±21 The

advantage of Newton's method is that its convergence is quadratic and hence it always converges

provided that a suitable starting iterate is available. For ¯uid ¯ow problems which use the no-slip

boundary condition this is not usually a problem and convergence is guaranteed no matter how large

the Reynolds number. This contrasts with Gauss±Seidel-type methods which can be unconvergent for

large Peclet numbers. Further, since the convergence is quadratic, a satisfactory tolerance can be

achieved usually in three to ®ve iterations and it can be shown that for problems in two dimensions

the method is competitive with Gauss±Seidel-type methods.

The paper is in two halves. The ®rst considers a restricted grid transformation which enables us to

eliminate the vorticity from the equations. There is then one governing equation for the

streamfunction which is solved in a straightforward manner. The disadvantage is that it is not

possible to have long channels or to adequately re®ne the mesh near a sharp corner. For the

unrestricted class of transformations it is cumbersome to eliminate the vorticity mathematically and it

is easier to eliminate it after discretization. This produces a wider molecule than in the ®rst case, but

this can be reduced by a suitable subtraction of terms which are in accordance with the fourth-order

accuracy of the method.

2. FLOW DOMAIN AND TRANSFORMATIONS

A general algebraic orthogonal mapping from physical space (x, y) to computational space (x, Z) can

be effected by applying a conformal mapping followed by a stretching of the co-ordinates. We will
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®rst consider a conformal transformation and look at the stretching in a later section. Suppose the

physical (x, y) space is ®rst transformed into a computational (x, Z) space using a conformal mapping

z � Z�y�; �1�

where z� x� iy and y� x� iZ. Our interest is in the ¯ow in a constricted channel and one possible

mapping to study such a ¯ow is given by

z � Z�y� � y�A� B tanh y�; �2�

where A and B are constants. The transformation then is

x � Ax� B

H
�x sinh�2x� ÿ Z sin�2Z��; �3�

y � AZ� B

H
�Z sinh�2x� � x sin�2Z��; �4�

where H� cosh(2x)� cos(2Z). The Jacobian J of the transformation is given by J� xx yZ7 yxxZ and

using the Cauchy±Riemann equations becomes J� x2
x� y2

x, which is zero when xx� yx� 0. This

occurs at just one point (x0, Z0)� (0�562101, 1�049059), giving a co-ordinate singularity at which

point the mesh starts to overlap. It is this singularity that enables us to study the ¯ow past an

increasingly sharp corner. Suppose that the domain of the ¯ow in a symmetric constriction is given by

the region ÿ?< x<? and ÿl< Z< l in the computational space, where l< Z0, and suppose

further that the diameter of the tube is 2a far upstream and 2b far downstream; then A and B are given

as

A � a� b

2l
; B � bÿ a

2l
: �5�

Figures 1±3 show the domains for l� 0�6, 0�9 and 1�0 respectively for a� 1 and b� 0�5. As the value

of l becomes closer to Z0, the domain of the ¯ow has an increasingly sharp corner. In our calculations

we will study three cases, namely l� 0�6 representing a smooth constricting channel, l� 0�9
representing a channel with a smooth corner and l� 1�0 representing a channel with a smooth but

very sharp corner.

Figure 1. Channel geometry for l� 0�6
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3. GOVERNING EQUATIONS AND NUMERICAL DISCRETIZATION

The governing equations are the Navier±Stokes equations, which in the streamfunction=vorticity

formulation can be written as

@2c
@x2
� @

2c
@y2
� ÿz; �6�

@2z
@x2
� @

2z
@y2
� Re

@z
@x

@c
@y
ÿ @z
@y

@c
@x

� �
; �7�

Figure 2. Channel geometry for l� 0�9

Figure 3. Channel geometry for l� 1�0 (top) and close-up near corner (bottom)
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where c and z are the streamfunction and vorticity respectively. Using (3) and (4), equations (6) and

(7) transform to

@2c

@x2
� @

2c
@Z2
� ÿJz; �8�

@2z

@x2
� @

2z
@Z2
� Re

@z
@x
@c
@Z
ÿ @z
@Z
@c
@x

� �
: �9�

Eliminating z from these two equations, we obtain the streamfunction formulation of the Navier±

Stokes equations given by

@4c

@x4
� 2

@4c

@Z2@x2
� @

4c
@Z4
� 2C � Re

@c
@Z

� �
@3c

@x3
� @3c
@x@Z2

� �
� 2Dÿ Re

@c
@x

� �
@3c

@Z@x2
� @

3c
@Z

� �

ÿ E � C Re
@c
@Z
ÿ D Re

@c
@x

� �
@2c

@x2
� @

2c
@Z2

� �
; �10�

where C� J x=J , D� J Z=J and E� 2C2� 2D27 J ZZ=J7 Jxx=J.

On the walls of the channel we have the no-slip condition of zero velocity, i.e. on Z� l we have

c� constant which we set to unity and @c=@Z� 0. Far upstream or downstream the ¯ow will be

uniform and given by Poiseuille's parabolic velocity pro®le. Finally the line Z� 0 is a line of

symmetry which, being a streamline, has c� constant and is set to zero. The boundary conditions can

be summarized as

c � 1 and @c=@Z � 0 on Z � l �11�

c! �Z=2l��3ÿ Z2=l2� and @c=@x! 0 as x!�1; �12�

c � 0 and @2c=@Z2 � 0 on Z � 0 �symmetry line�: �13�

A uniform grid is placed on the computational domain with mesh spacing h and k in the x- and Z-

direction respectively. If ci, j is an approximation for c at the nodal point (i, j), then the x-derivatives

in (10) are approximated by fourth-order central differences given by

@c
@x
� 1

12h
�ÿci�2; j � 8ci�1; j ÿ 8ciÿ1; j � ciÿ2; j�;

@2c

@x2
� 1

12h2
�ÿci�2; j � 16ci�1; j ÿ 30ci; j � 16ciÿ1; j ÿ ciÿ2; j�;

@3c

@x3
� 1

8h3
�ÿci�3; j � 8ci�2; j ÿ 13ci�1; j � 13ciÿ1; j ÿ 8ciÿ2; j � ciÿ3; j�;

@4c

@x4
� 1

6h4
�ÿci�3; j � 12ci�2; j ÿ 39ci�1; j � 56ci; j ÿ 39ciÿ1; j � 12ciÿ2; j ÿ ciÿ3; j�

�14�
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and replacing x by Z and h by k gives the corresponding Z-derivatives. The mixed derivatives are

evaluated in the programme using a `for' loop. For example, the derivative @3c=@x@y2 is

approximated by

al �
1

12h
�ÿci�2; j�l � 8ci�1; j�l ÿ 8ciÿ1; j�l � ciÿ2; j�l�; l � ÿ2;ÿ1; . . . ; 2;

@2c
@x2
� 1

12k2
�ÿa2 � 16a1 ÿ 30a0 � 16aÿ1 ÿ aÿ2�;

�15�

which forms a 565 molecule. Equation (10) is discretized using formulae (14) to produce the 29-

point molecule shown in Figure 4(a), which can be represented as

D29
4 ci; j � 0; i � 1; 2; . . . ;N ÿ 1; j � 1; 2; . . . ;M ÿ 1; �16�

where Da
b is a discretization of order b using a points. Equation (16) is applied to all interior points of

the computational domain. This necessitates the use of two rows of ®ctitious nodes outside the

boundary (see Figure 4(a)) and hence at each boundary location we need to supply three equations,

associated with the boundary point itself and the two ®ctitious nodes, in order to close the system. On

the upper boundary Z� l we have the boundary conditions (11) in which the derivative is differenced

using the ®rst of formulae (14); thus we have

ci;M � 1 i � 0; 1; . . . ;N ;

ÿci;M�2 � 8ci;M�1 ÿ 8ci;Mÿ1 � ci;Mÿ2 � 0; i � 1; 2; . . . ;N ÿ 1:
�17�

However, a third equation is still required for closure, which is a characteristic of fourth-order wide-

molecule methods. There are many possibilities, especially if we use non-centred differences. We

have adopted a method proposed by Henshaw and co-workers1,2 which employs central differences

throughout. In cases where a Dirichlet boundary condition is employed, the third equation is a

Figure 4. Computational stencils used in calculations: (a) standard fourth-order 29-point stencil; (b) second-order 13-point
stencil; (c) 29-point stencil at a corner; (d) fourth-order 33-point stencil
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discretization of the governing equation (10) using second-order differences applied at the boundary.

Henshaw et al.2 and Hunt15 have shown both analytically and using numerical experiments that the

overall accuracy of the method is fourth-order. Further, since central differences are used throughout,

the accuracy of the method is anticipated to be better than when non-central differences are used.

Using standard second-order central differences, equation (10) is discretized to produce a 13-point

molecule (see Figure 4(b)) which is given symbolically as

D13
2 ci;M � 0; i � 1; 2; . . . ;N ÿ 1: �18�

Far upstream or downstream we use the boundary condition (12), which gives

ci; j �
kj

2l
3ÿ �kj�2

l2

� �
ÿci�2; j8ci�1; j ÿ 8ciÿ1; j � ciÿ2; j � 0

9>=>; i � 0;N ; j � 1; 2; . . . ;M ÿ 1: �19�

We could apply the second-order discretization (18) at the boundary as the third equation, but

numerical experiments seem to cause some dif®culties and it was found that setting the outermost

®ctitious points to the value on the boundary gave good results, i.e.

cÿ2; j � c0; j and cN�2; j � cN ; j; j � 1; 2; . . . ;M ÿ 2: �20�
At the lower boundary Z� 0 we can assign values at the ®ctitious nodes by noting that c is

asymmetric about Z� 0. Thus we have

ciÿ0 � 0; ci;ÿ1 � ÿci;1 and ci;ÿ2 � ÿci;2; i � ÿ1; 0; . . . ;N � 1: �21�
This use of the asymmetry of c at the boundary is equivalent to using cZZZZ� 0 on the boundary as

the third equation.

Special attention needs to be given to the corners (see Figure 4(c)). Applying the 29-point molecule

at the interior point next to the corner shows that all the ®ctitious nodes will not be used. There are in

fact just three nodes labelled A, B and C which do not have, as yet, an equation associated with them.

Values at A and B can be obtained by extending the boundaries past the corners for one node and

using formulaes (11) and (12). For C we use the average of the equations @c=@x� 0 and @c=@Z� 0

evaluated at the corner in which the derivatives are approximated using asymmetric differences. The

equations employed are

A : ci;M � 0; i � ÿ1;N � 1; �22�

B : ci;M�1 �
kj

2l
3ÿ �kj�2

l2

� �
; i � 0;N ; �23�

C :
1

12h
�3cN�1;M�1 � 10cN ;M�1 ÿ 18cNÿ1;M�1 � 6cNÿ2;M�1 ÿ cNÿ3;M�1�

� 1

12k
�3cN�1;M�1 � 10cN�1;M ÿ 18cN�1;Mÿ1 � 6cN ÿ cN�1;Mÿ3� � 0;

with a similar expression associated with node (ÿ1, m � 1). (24)

In order to ease the coding, the value of ci, j at nodes not used in the calculation will be set to zero;

hence we have

ci; j � 0 �for all other nodes�: �25�
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4. NUMERICAL SOLUTION

Equations (16)±(25) form a closed set of non-linear equations from which the ci, j can be determined.

Let C be a column vector whose elements are the ci, j arranged lexicographically with j varying most

rapidly, i.e. the order is given by ((ci, j, j� 7 2, 7 1, . . . , M� 2), i� 7 2,7 1, . . . , N� 2). Let F
be a similar vector whose elements Fi, j are the equations (16)±(25) associated with the nodes (i, j) in

which the terms on the right-hand side have been transferred onto the left-hand side; thus the

equations are Fi,j� 0 and are arranged in the same order as the ci, j . Thus the equations to be solved

can be written as

F�C� � 0; �26�

which is a system of (N� 5)(M� 5) non-linear equations in as many unknowns.

A convenient and reasonably ef®cient way of solving (26) is by Newton iteration according to

C�s�1� �C�s� � DC�s�; s � 0; 1; 2; . . . ; �27�

where is DC(s) is the solution of

AD�s� � ÿF�C�s�� �28�

and A� @F=@C is the Jacobian matrix evaluated at C�C(s). The matrix A is calculated dynamically

before each inversion of (28) using the formula

@Fi; j

@ck;l

� Fi; j�. . . ;ck;l � e; . . .� ÿ Fi; j�. . . ;ck;l; . . .�
e

; �29�

where e is a small parameter. Since all calculations are performed in double precision, we set

e� 10ÿ6, i.e. about the square root of the precision, which gives A suf®ciently accurate for the

iteration (27) to converge rapidly. Equation (28) is solved using Gaussian elimination, which is

reasonably ef®cient since the matrix A is banded with a semi-width 3(M� 5) for most of the matrix,

where the `3' is the semi-width of the 29-point molecule.

The CPU time required for each iteration (28) and the storage requirement for the matrix A are both

huge. However, ef®cient software has been developed for the inversion of equation (28)20 which

takes account of the jaggedness of the bandwidth and only reduces equations which have non-zero

multipliers. Further, the matrix A is kept on the hard disc and disc transfers to and from memory are

kept to a minimum and performed in large batches, which takes less than 1% of the CPU time. All

this is well within the capabilities of the modern workstation and these calculations were performed

on a Sparc 10. The great advantage of Newton's method is its quadratic convergence and usually only

a few iterations are required to reduce errors to a small tolerance provided that a suitable starting

iterate C(0) is available. In our problem, owing to c being prescribed on the boundaries, virtually

anything will work and we set C(0)� 0. For a tolerance of 10ÿ6 a solution is achieved in three to ®ve

iterations. It has been shown22 that the numerical solution of partial differential equations in two

space dimensions is as ef®cient as the more traditional Gauss±Seidel-type methods.

5. ACCURACY

The numerical solution is obtained on an N6M grid and in order to estimate the error in these results

we obtain a second solution on an N=26M=2 grid for comparison. Suppose, at a common location,
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the numerical solution is cF on the original ®ne grid and cM on the coarser grid, and if further c is the

exact solution at this point, then since the method is fourth-order we have

cÿ cF � Kh4 and cÿ cM � K�2h�4 �30�
for some constant K, assuming that k is proportional to h. Eliminating c, we obtain an estimate for the

error EF on the ®ne grid (�Kh4) as

EF � 1
15
�cF ÿ cM�: �31�

The theoretical order of the method is four and in order to test that the observed or perceived order is

close to this value we obtain results on a further grid with dimension N=46M=4. If cC is a value on

this coarse grid at the same location as c, cF and cM cited previously and a is the perceived order,

then

cÿ cF � Kha; cÿ cM � K�2h�a and cÿ cC � K�4h�a; �32�
Eliminating c and K gives

cM ÿ cC

cF ÿ cM

� 2a; �33�

from which a can be formed. In the tables the RMS error RF is evaluated as the root mean square error

of the values of EF given by (31) from each of the common locations. If RM is the RMS error of the

middle grid obtained from EM� 1
15

(cM 7cC), then the perceived accuracy given in the tables is

a � ln�RM=RF�=ln 2: �34�

6. RESULTS

Results have been obtained on the ®ne grid with N� 256 and M� 64 for various l and Re and with

N� 128, M� 32 and N� 64, M� 16 on the middle and coarse grids respectively. The range of x is

chosen to be ÿ2< x< 3, with the critical point x0 being approximately at the midpoint, which using

(3) gives x approximately in the range ÿ2a=l< x< 3b=l. The upstream and downstream radii a and

b are set to 1�0 and 0�5 respectively as cited earlier, giving approximately ÿ3�3< x< 2�5 for l� 0�6
and ÿ2�0< x< 1�5 for l� 1�0� Tables I±III show the RMS errors and perceived order for l� 0�6, 0�9
and 1�0 respectively for various Re up to 250. For comparison we have obtained results using second-

order central differences throughout and these are also shown in the tables. The ®nal column shows

the ratio of the RMS errors from the second- and fourth-order methods.

Table I. RMS errors, perceived order and ratio between errors for l� 0�6
Fourth-order method Second-order method

Re c-error c-order c-error c-order Ratio

0 7�00 (ÿ9) 3�05 1�44 (ÿ5) 2�00 2060�00
1 6�00 (ÿ9) 3�35 1�51 (ÿ5) 2�00 2520�00

10 2�59 (ÿ7) 2�13 2�22 (ÿ5) 2�00 85�70
50 5�80 (ÿ7) 3�32 4�07 (ÿ5) 2�01 70�20

100 6�00 (ÿ6) 3�97 7�40 (ÿ5) 2�90 12�30
125 8�51 (ÿ6) 4�17 8�73 (ÿ5) 3�28 10�30
250 4�74 (ÿ5) 3�29 2�47 (ÿ4) 3�29 5�21
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For the case of a channel with a gradual constriction, l� 0�6, we would expect good results, since

the grid in physical space is always slowly varying. For small Reynolds number the accuracy is very

high (<10ÿ8) and errors are about 2000 times smaller than their second-order counterparts. However,

as Re increases, the error increases dramatically and the comparison ratio with second-order results

decreases greatly. It is known that for large Re the ¯ow does not regain its parabolic pro®le until a

great distance downstream and setting the end of the channel at x� 2�5 is almost certainly too small.

This will be recti®ed when we consider a more general mesh later on. The perceived order for the

most part lies between three and four and varies considerably. This contrasts with the second-order

results which have a perceived order close to two. This variation of the perceived order is observed by

other authors in fourth-order calculations.4±8 It also appears to be a phenomenon of two-dimensional

problems, since fourth-order methods applied to one-dimensional problems invariably have a

perceived order close to four. It is not clear what causes this, but it could be associated with the way

we have discretized the equations at the corners of the computational domain.

For the channel with a moderately smooth corner, l� 0�9, the results are less good at low Reynolds

number compared with l� 0�6, as one would expect, but are better at high Re and are signi®cantly

better than the second-order results over the whole range. The perceived order shows a similar

variation to that observed at l� 0�6 and includes cases in which the order is greater than four.

For the case l� 1�0, having a very sharp corner, the errors are respectable but are not much higher

than their second-order counterparts. Considering the extra coding required for a fourth-order

method, one is looking for a much better improvement. Unfortunately the code did not converge on

the coarse grid and hence we were not able to calculate the perceived order (shown as `*' in Table

III). This is almost certainly because the grid is not suf®ciently re®ned near the corner. In the next

Table II. RMS errors, perceived order and ratio between errors for l� 0�9
Fourth-order method Second-order method

Re c-error c-order c-error c-order Ratio

0 3�60 (ÿ8) 4�80 1�56 (ÿ5) 1�99 433�00
1 3�30 (ÿ8) 4�86 1�41 (ÿ5) 1�99 427�00

10 3�17 (ÿ7) 2�62 2�00 (ÿ5) 2�00 63�10
50 1�54 (ÿ6) 2�75 4�88 (ÿ5) 1�98 31�69

100 3�62 (ÿ6) 3�51 9�43 (ÿ5) 2�12 26�05
125 4�74 (ÿ6) 3�80 1�20 (ÿ4) 2�21 25�32
250 9�39 (ÿ6) 4�35 2�76 (ÿ4) 2�23 29�39

Table III. RMS errors, perceived order and ratio between errors for l� 1�0
Fourth-order method Second-order method

Re c-error c-order c-error c-order Ratio

0 7�92 (ÿ6) � 3�30 (ÿ5) 1�99 4�17
1 1�05 (ÿ5) � 2�73 (ÿ5) 1�99 2�60

10 1�11 (ÿ5) � 2�02 (ÿ5) 1�98 1�82
50 4�51 (ÿ5) � 1�02 (ÿ4) 1�96 2�26

100 2�33 (ÿ5) � 2�67 (ÿ4) 2�01 11�46
125 2�19 (ÿ5) � 3�68 (ÿ4) 2�05 16�80
250 7�61 (ÿ5) � 8�94 (ÿ4) 2�49 11�75
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section we will consider grids which can be arbitrarily re®ned near the corner and obtain much more

satisfactory results.

7. A MORE GENERAL TRANSFORMATION

We have seen some of the limitations of the transformation given by equations (3) and (4) and we

now consider a non-uniform stretching of the mesh cells in the x- and Z-direction. Replacing x and Z
by �x and �Z respectively in all previous equations, the stretching of co-ordinates can be effected using

�x � f �x�; �Z � g�Z�; �35�
where the new co-ordinates x and Z refer to the new computational domain and the functions f and g

are at our disposal. Substitution of (35) into the governing equations (8) and (9) gives

1

f 02
@2c

@x2
ÿ f 00

f 03
@c
@x
� 1

g02
@2c
@Z2
ÿ g00

g03
@c
@Z
� ÿ J

f 0g0
z; �36�

1

f 02
@2c

@x2
ÿ f 00

f 03
@c
@x
� 1

g02
@2c
@Z2
ÿ g00

g03
@c
@Z
� Re

f 0g0
@z
@x
@c
@Z
ÿ @z
@Z
@c
@x

� �
; �37�

where J� xx yZ7 yxxZ and the `primes' denote derivatives. The transformation (3) and (4) is as

before, i.e.

x � A�x� B

H
��x sinh�2�x� ÿ �Z sin�2�Z��; �38�

y � A�Z� B

H
��Z sinh�2�x� � �x sin�2�Z��; �39�

where H� cosh(2�x)� cos(2�Z�. In a conformal mapping the mesh elements are square, but

subsequently applying the transformation (35) gives rectangular mesh elements with aspect ratio

f 0=g0. The Cauchy±Riemann conditions are replaced by g0xx� f 0yZ and g0yx� 7 f 0xZ.

At this point we would eliminate x from equations (36) and (37) to produce a single equation in

c. However, the resulting equation is so huge and complex that it was found easier to make the

substitution after the equations are discretized. Hence (36) and (37) are discretized using (14) and

then the zi, j in the discretized equation (37) are replaced by their expressions given by the discretized

equation (36). It should be appreciated that this substitution is never done on paper but occurs in the

coding. The resulting molecule has 33 points (see Figure 4(d)) and its difference equation can be

represented by

D33
4 ci; j � 0; i � 1; 2; . . . ;N ÿ 1; j � 1; 2; . . . ;M ÿ 1; �40�

applied at all the interior points. The semi-width of the molecule is `4' and the semi-width of the

Jacobian matrix A is W� 4(M� 7). Since the CPU time varies as W 2, this represents at least a 78%

increase in the time requirement. However, by using the nine-point discretizations for the seventh and

eighth derivatives, it is possible to remove the extreme points N, E, S and W in Figure 4(d) to obtain a

29-point molecule which maintains the fourth-order accuracy of the method. If CE and CW are the

coef®cients of ci, j at points E and W, then (40) gives

CE �
P1

h4
� Q1

h3
; CW �

P1

h4
ÿ Q1

h3
; �41�
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where

P1 � ÿ
g0f 02 ÿ h2�g0f 002 � T �

144f 03J
; Q1 � ÿ

2f 00g0 � f 02T

144f 04J
�42�

and T is the discretization of Re @c=@Z. Now

@7c

@x7
� 1

2h7
�ÿciÿ4; j � 6ciÿ3; j ÿ 14ciÿ2; j � 14ciÿ1; j ÿ 14ci�1; j � ci�2; j ÿ 6ci�3; j � ci�4; j�; �43�

@8c

@x8
� 1

h8
�ciÿ4; j ÿ 8ciÿ3; j � 28ciÿ2; j ÿ 56ciÿ1; j � 70ci; j ÿ 56ci�1; j � 28ci�2; j ÿ 8ci�3; j � ci�4; j�;

�44�
and hence by subtracting

P1h4 @
8c

@x8
� 2Q1h4 @

7c

@x7
�45�

from (40) we observe that the coef®cients of ci,j at E and W are zero and since (45) is O(h4) the

overall accuracy of the method is fourth-order. Similarly we can reduce the coef®cients of ci,j at N

and S to zero by subtracting

P2k4 @
8c
@Z8
� 2Q2k4 @

7c
@Z7

; �46�

where P2 and Q2 are the same as P1 and Q1 with the roles of f and g interchanged and T is the

discretization of Re @c=@x. After the subtraction of the discretized form of (45) and (46), using (43)

and (44), we have a 29-point molecule which can be represented as

D29
4 ci; j � 0; i � 1; 2; . . . ;N ÿ 1; j � 1; 2; . . . ;M ÿ 1: �47�

The molecule now has the same form as before and it simply replaces the old discretization (16) and

the rest of the set-up is virtually the same. Noting that @=@�x� f 0@=@x and @=@�Z� g0@=@Z, we see that

all the boundary conditions are the same except for the ®rst of (12), which now becomes

c! �g=2l��3ÿ g2=l2� as x!�1; �48�
and this means that we simply replace kj by g(kj) in (19) and (23). Thus the system of equations is as

given before except using the new molecule (47) in the interior and the boundary condition (48).

8. ALTERNATIVE GRIDS AND THE RESULTS

We have noted previously that inaccuracies could occur at high Reynolds number because the

downstream channel could not be set not long enough. A transformation that can give long channels

and yet be well re®ned near the critical point x0� 0�562101 is given by

f �x� � A1 sinh�k1x� � x0; g�Z� � Z; �49�
where A1 and k1 are at our disposal and are selected such that the channel covers the range

7 4< x< 6�Re=10. In practice we set A1� l=2 and k1� 2=l. Figure 5 show the resulting grid for

l� 0�9 which is re®ned near x0 and coarser upstream and downstream. We use M� 96, 48 and 24 on

the re®ned middle and coarse grids respectively with h� k� l=M, i.e. the computational mesh

elements are now square. Because the range of x varies with Re, the value of N also varies and is
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determined dynamically by its range. Tables IV±VI give the RMS accuracy, perceived order and

comparison with the second-order equivalent method for the three values of l and Reynolds numbers

up to 250. For l� 0�6, the gradual constriction, the results are much more accurate than found

previously, with errors less than 10ÿ6 at worst, and are much better than those of the second-order

method by at least 100 and in many cases very much more. The perceived accuracy is now very close

to four, demonstrating the genuine fourth-order nature of the method. For l� 0�9, having a

moderately sharp corner, the errors are somewhat larger than for l� 0�6, as we would expect, but are

still much smaller than for the second-order method and again have perceived order close to four. For

Figure 5. Non-uniform grid in x-direction for l� 0�9

Table IV. RMS errors, perceived order and ratio between errors for l� 0�6
Fourth-order method Second-order method

Re c-error c-order c-error c-order Ratio

0 3�00 (ÿ9) 3�98 1�35 (ÿ5) 2�00 4500�00
1 3�00 (ÿ9) 3�98 1�46 (ÿ5) 2�00 4870�00

10 1�50 (ÿ8) 3�74 2�41 (ÿ5) 2�00 1610�00
50 1�97 (ÿ7) 4�03 4�38 (ÿ5) 2�01 222�00

100 3�61 (ÿ7) 4�04 5�86 (ÿ5) 2�00 162�00
125 4�48 (ÿ7) 4�03 6�57 (ÿ5) 2�00 147�00
250 8�76 (ÿ7) 3�92 9�50 (ÿ5) 1�98 108�00

Table V. RMS errors, perceived order and ratio between errors for l� 0�9
Fourth-order method Second-order method

Re c-error c-order c-error c-order Ratio

0 3�20 (ÿ8) 3�89 1�94 (ÿ5) 1�99 606�00
1 3�00 (ÿ8) 3�82 1�80 (ÿ5) 1�99 617�00

10 3�40 (ÿ8) 3�88 2�52 (ÿ5) 2�01 741�00
50 1�98 (ÿ7) 3�89 5�68 (ÿ5) 2�01 287�00

100 8�00 (ÿ7) 3�78 1�17 (ÿ4) 1�98 146�00
125 1�31 (ÿ6) 3�71 1�55 (ÿ4) 1�96 118�00
250 5�54 (ÿ6) 2�98 3�76 (ÿ4) 1�80 67�90
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l� 1�0, with the very sharp corner, the results are also excellent and comparable with the l� 0�9 case

in terms of accuracy. Here the perceived order is signi®cantly greater than four. It should be

appreciated that the transformation (49) lacks re®nement in the Z-direction near the corner, and since

the corner is very sharp for l� 1.0, a suitable re®nement should produce even better results. This can

be achieved by setting f(x) as before and g(Z) given by

g�Z� � 3ÿ d
2

Zÿ 1ÿ d

2l2
Z3; �50�

which has a grid spacing proportional to d near the corner, and by selecting d to be small we can

obtain a grid having re®nement near the corner in both the x- and the Z-directions. Setting d� 0�48

Table VI. RMS errors, perceived order and ratio between errors for l� 1�0
Fourth-order method Second-order method

Re c-error c-order c-error c-order Ratio

0 4�97 (ÿ7) 4�53 4�13 (ÿ5) 2�03 83�1
1 4�99 (ÿ7) 4�57 3�69 (ÿ5) 2�04 73�90

10 5�71 (ÿ7) 4�70 3�76 (ÿ5) 2�04 65�80
50 5�35 (ÿ7) 6�00 1�36 (ÿ4) 2�05 254�0

100 2�22 (ÿ6) 6�16 2�95 (ÿ4) 1�95 133�00
125 2�31 (ÿ6) 7�08 3�72 (ÿ4) 1�89 161�00
250 2�88 (ÿ6) 8�37 5�83 (ÿ4) 1�56 202�00

Figure 6. Non-uniform grid in both directions for l� 1�0 (top) and re®ned grid near corner (bottom)
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for l� 1�0, we obtain the grid shown in Figure 6 which is very re®ned near the corner. The RMS

errors for this case are shown in Table VII and the results are indeed excellent, being less than 10ÿ6

everywhere and having a perceived accuracy reasonably close to four and are substantially better than

those of the corresponding second-order method.

Figures 7±9 show the streamlines for the three values of l at Re� 250 and are typically as we

would expect. The case l� 0�9 shows a small circulation region after the corner (see close-up in

Table VII. RMS errors, perceived order and ratio between errors for l� 1�0 and
d� 0�48

Fourth-order method Second-order method

Re c-error c-order c-error c-order Ratio

0 4�10 (ÿ8) 4�05 2�34 (ÿ5) 2�00 571�00
1 4�00 (ÿ8) 3�99 2�29 (ÿ5) 2�00 573�00

10 2�00 (ÿ8) 3�70 2�24 (ÿ5) 2�00 1120�00
50 5�70 (ÿ8) 3�93 3�47 (ÿ5) 2�01 609�00

100 1�12 (ÿ7) 4�07 5�06 (ÿ5) 2�01 452�00
125 1�38 (ÿ7) 4�12 5�69 (ÿ5) 2�02 412�00
250 5�41 (ÿ7) 3�59 7�93 (ÿ5) 1�99 147�00

Figure 7. Channel: streamlines for Re� 250 and l� 0�6

Figure 8. Channel: streamlines for Re� 250 and l� 0�9 (top) and close-up view just after corner (bottom)
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Figure 8); this becomes much larger for the case l� 1�0, extending to a distance of 2�1 past the

corner.

9. CONCLUSIONS

We have successfully tested a fourth-order numerical method for solving the Navier±Stokes

equations in two dimensions on a general non-uniform orthogonal grid for a constricted channel

which can contain an increasingly sharp but smooth corner. The non-uniformity allows us to have

suf®ciently long channels to contain all the features of the ¯ow and to re®ne the grid near the sharp

corner in both transverse and axial directions. For the sharpest corner considered, very accurate

results have been obtained with errors less than 5610ÿ7 for Reynolds numbers up to 250 and the

perceived order of the method is close to four, showing that the method is genuinely fourth-order.

These are on average, using the harmonic mean, about 400 times more accurate than those of the

corresponding second-order method. This means that if we require results for a speci®ed tolerance, it

is possible to reduce the number of nodes in each direction by a factor of 4001=4� 4�5 when using the

fourth-order method rather than a second-order method. If Newton's method is employed to solve the

ensuing difference equations, then the CPU time can be reduced by a factor of about 180. A similar

reduction would be expected if a Gauss±Seidel-type method were used, since the work load is

roughly the same as that of Newton's method.
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